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Synthesis of substituted butenolides by the ring closing metathesis
of two electron deficient olefins: a general route to the

natural products of paraconic acids classI
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Abstract—A variety of allyl acrylates possessing electron-withdrawing groups undergo RCM using the second generation Grubbs’
catalyst in the presence of a Lewis acid resulting in diverse butenolides in high isolated yields. This methodology provides a general
route to the natural products of paraconic acids class, exemplified by a total synthesis of (±)-phaseolinic acid.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. Retrosynthesis of compound 1.
Paraconic acids are a group of highly substituted
c-butyrolactones isolated from different species of moss,
lichens, fungi and cultures of Penicillium sp. (Fig. 1).1

They possess either a methyl or a methylene group at
the a-position and a carboxyl group at the b-position
of the butyrolactone ring. However, they vary structur-
ally with respect to the groups attached at the c-posi-
tion. The paraconic acids exhibit interesting biological
activities such as antitumor, antifungal, and antibacte-
rial.2 Consequently, the synthesis of paraconic acids
has attracted wide attention from synthetic chemists.3

Herein, we report our initial efforts in this area culminat-
ing in an efficient and a general route to natural prod-
ucts of this class.

We envisioned that the b-carboxylated c-butyrolactone
skeleton in paraconic acids could conceivably be
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1: R = C5H11, phaseolinic acid    3: R = C11H23, nephrosteranic acid
2: R = C13H27, nephromopsinic acid    4: R = C13H27, roccellaric acid
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Figure 1.
accessed via ring closing metathesis (RCM) of appropriate
dienes (Scheme 1).4 Since phaseolinic acid 1 had been
prepared by methylating carboxylic acid 5,3e we planned
to obtain acid 5 from butenolide 6, which in turn would
be assembled from diene 7 using RCM as the key step.
Diene 7 would be readily accessible by the acryloylation
of the corresponding alcohol, which in turn would be
available using a Baylis–Hillman reaction.5 A literature
search revealed that a b-carboxylated c-butyrolactone
had not been prepared using the RCM reaction.

In order to test the feasibility of a RCM reaction on the
electron-deficient diene 7, we turned our attention
initially to cyclising the unsubstituted diene 9 as a model
system (Scheme 2). Diene 9 was prepared by acryloyla-
tion of the known Baylis–Hillman adduct 8.5c The prep-
aration of 4,5-dialkyl butenolides has been reported
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Table 1. Syntheses of 5-substituted butenolides
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Scheme 2.
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recently using the first generation Grubbs’ catalyst 11 of
the appropriate dienes wherein the dienes possess an al-
kyl group on one of the double bonds.6 However,
employing similar conditions for the RCM of diene 9,
with electron-withdrawing groups on the double bonds,
did not result in even a trace of cyclisation product. In
addition, attempted RCM of diene 9 using the second
generation Grubbs’ catalyst 12 also resulted in recovery
of the starting material. At this stage, prompted by some
literature reports that Lewis acids such as titanium tetra-
isopropoxide promote the RCM of many substrates,7 we
tried to perform the RCM in the presence of a Lewis
acid. To that end, employing 10 mol % of Grubbs’
second generation catalyst along with 10 mol % of
Ti(OiPr)4 in dichloromethane, RCM of diene 9 resulted
in the required cyclisation product 10 in 90% isolated
yield.8
Butenolide product Yield (%)
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Having identified appropriate experimental conditions,
we turned our attention to substituted electron-deficient
dienes in order to generalise the RCM method (Table
1).9 Dienes 13 and 15 underwent a smooth RCM result-
ing in the corresponding alkyl substituted butenolides 14
and 16, respectively. Likewise, the cyclohexyl substi-
tuted diene 17 gave 18 in a high yield. Successful closure
was possible with aromatic substituents (entries 4 and
5), however, the double bond in the resultant buteno-
lides 20 and 22 was found to have migrated to the b,c-
position presumably due to the extended conjugation.
In order to bring further diversity at C-5, the RCM with
the furan substituted diene 23 was attempted, but no
trace of cyclisation product was found. Next, we ex-
plored the RCM reaction on dienes possessing different
electron-withdrawing groups such as ketone and nitrile
in place of the ester. Thus, keto-diene 24, gave the
required product 25 in good yield. However, all our
attempts with diene 26, possessing a nitrile group as
the electron-withdrawing group, resulted only in recov-
ery of starting material.

Having generalised the RCM reaction of the electron
deficient dienes, we turned our attention to the synthesis
of phaseolinic acid 1 (Scheme 3). The known Baylis–
Hillman adduct 27,5b obtained from ethyl acrylate and
hexanal, was acryloylated to afford diene 7, which
underwent a smooth RCM reaction leading to the cycli-
sation product 6.10 Catalytic hydrogenation of buteno-
lide 6 using Pd/C in ethyl acetate resulted in a 1:2
diastereomeric mixture of cis and trans butyrolactones
28 and 29, respectively, which was easily separated by
column chromatography. Apart from the spectral data,
1D NOE experiments revealed a strong interaction for
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Scheme 3. Reagents and conditions: (a) Ref. 5b; (b) acryloyl chloride,
Et3N, CH2Cl2, 0 �C to rt, 95%; (c) 12, Ti(OiPr)4, 50 �C, 87%; (d) 10%
Pd–C, H2, EtOAc, 84% (combined yield, 1:2 ratio) or 10% Pd–C,
ammonium formate, MeOH, reflux, 83% (combined yield, 4:1 ratio);
(e) 6 N HCl, dioxane, reflux, 91%; (f) NaN(TMS)2, MeI, THF,
�78 �C.
the cis vicinal protons in the isomer 28, which provided
further evidence for the identity of isomers 28 and 29.11

After considerable efforts to improve the ratio of the iso-
mers in favour of the cis isomer 28, we discovered that
transfer hydrogenation with ammonium formate re-
sulted in an acceptable ratio of 4:1. The total synthesis
of phaseolinic acid was completed following the re-
ported protocol.3e Thus, cis diastereomer 28 was con-
verted to (±)-phaseolinic acid 1 by hydrolysis followed
by methylation. The spectral data of the synthetic mate-
rial were comparable to that of reported values.3a

It is interesting to note that other natural products of the
paraconic acids class could be synthesised following a
similar sequence. Thus, the total synthesis of nephroster-
anic acid 3 could be achieved from the trans alcohol
analogous to 29 obtained using dodecanal as the alde-
hyde in the Baylis–Hillman reaction instead of hexanal
(Scheme 3).12 In a similar way, using tetradecanal as
the aldehyde would pave the way for the total synthesis
of roccellaric acid 4. As the syntheses of these natural
products 3 and 4 require the trans alcohol analogous
to 29, we wished to identify a method to obtain the trans
alcohol exclusively. To that end, after considerable
attempts, we discovered that a 1,4-hydrogen addition
using DIBAL-H in toluene afforded the required trans
isomer exclusively (Scheme 4). The total syntheses of
nephrosteranic acid 3 and roccellaric acid 4 will be the
subject of future publications from our laboratory.

In conclusion, the RCM reaction of highly electron-defi-
cient dienes has been achieved resulting in diverse bute-
nolides possessing electron-withdrawing groups at C-4.
It is important to note that dienes having two elec-
tron-deficient olefins underwent smooth RCM under
the identified experimental conditions. One such buteno-
lide product 6 served as the starting material for the
total synthesis of (±)-phaseolinic acid 1.
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